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Abstract 
Alzheimer’s disease (AD) involves many neurobiological alterations from molecular to 
macroscopic spatial scales, but we currently lack integrative, mechanistic brain models 
characterizing how factors across different biological scales interact to cause clinical 
deterioration in a way that is subject-specific or personalized. Neurotransmitter receptors, as 
important signaling molecules and potential drug targets, are key mediators of interactions 
between many neurobiological processes altered in AD. We present a neurotransmitter receptor-
enriched multifactorial brain model, which integrates spatial distribution patterns of 15 
neurotransmitter receptors from post-mortem autoradiography with multiple in-vivo 
neuroimaging modalities (tau, amyloid-β and glucose PET, and structural, functional and arterial 
spin labeling MRI) in a personalized, generative, whole-brain formulation. Applying this data-
driven model to a heterogeneous aged population (N=423, ADNI data), we observed that 
personalized receptor-neuroimaging interactions explained about 70% (± 20%) of the across-
population variance in longitudinal changes  to the six neuroimaging modalities, and up to 39.7% 
(P<0.003, FWE-corrected) of inter-individual variability in AD cognitive deterioration via an 
axis primarily affecting executive function. Notably, based on their contribution to the clinical 
severity in AD, we found significant functional alterations to glutamatergic interactions affecting 
tau accumulation and neural activity dysfunction, and GABAergic interactions concurrently 
affecting neural activity dysfunction, amyloid and tau distributions, as well as significant 
cholinergic receptor effects on tau accumulation. Overall, GABAergic alterations had the largest 
effect on cognitive impairment (particularly executive function) in our AD cohort (N=25). 
Furthermore, we demonstrate the clinical applicability of this approach by characterizing 
subjects based on individualized ‘fingerprints’ of receptor alterations. This study introduces the 
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first robust, data-driven framework for integrating several neurotransmitter receptors, multi-
modal neuroimaging and clinical data in a flexible and interpretable brain model. It enables 
further understanding of the mechanistic neuropathological basis of neurodegenerative 
progression and heterogeneity, and constitutes a promising step towards implementing 
personalized, neurotransmitter-based treatments. 
Keywords— neurotransmitter receptors, multimodal neuroimaging, Alzheimer’s disease, whole-
brain computational model, personalized medicine. 

Running title—Receptors altered in Alzheimer’s disease 

Abbreviations— AD = Alzheimer’s disease; ADAS = Alzheimer’s Disease Assessment Scale; 
ADNI = Alzheimer’s Disease Neuroimaging Initiative; ASL = arterial spin labeling; CBF = 
cerebral blood flow; MCI = mild cognitive impairment; MMSE = Mini-Mental State 
Examination; PHS = polygenic hazard score; = re-MCM = receptor-enriched multifactorial 
causal model; ROI = region(s) of interest; SVD = singular value decomposition 

Introduction 
Alzheimer’s disease (AD) involves degenerative changes to several neurobiological processes 
spanning molecular to macroscopic scales, including proteinopathies,  modified gene expression, 
synaptic alterations, vascular dysregulation, hypometabolism, and structural atrophy 1. In AD, 
these processes begin decades before the manifestation of cognitive deterioration 2, with vast 
inter-patient heterogeneity in age of disease onset, spatial distribution of neuropathologies, 
progression patterns, and clinical presentation 3. Currently, there are no effective disease-
modifying treatments for AD, despite many expensive attempts 2 3. These failures may be 
attributed to: i) the use of a generalized medicine approach to treatment without considering the 
pathophysiological and clinical heterogeneity of the disease 4 5 6, ii) the focus on single disease 
factors (e.g. tau and amyloid) whereas most biological mechanisms in AD are multi-factorial 7, 
and, importantly, iii) an incomplete multi-scale understanding of how molecular and 
macroscopic factors interact to cause disease progression 8. 

Recently, multi-modal neuroimaging models 9 10 have unravelled the temporal ordering of 
macroscopic structural, functional, vascular and proteinopathy changes in AD. Furthermore, 
personalized models of longitudinal neuroimaging data have been used to identify subject-
specific alterations of neurobiological processes including tau and amyloid accumulation, blood 
flow, and neural activity at rest 11. Nevertheless, such neuroimaging models lack a mechanistic 
basis in molecular and cellular processes. While these modalities may involve molecular 
imaging, such as amyloid or tau PET, their spatial resolution is limited in practice 12. Identifying 
important pathways between truly microscopic-scale variables and observable macroscopic 
neuroimaging (i.e. molecular PET and MRI) in AD would both advance the understanding of the 
underlying biology and improve the selection of therapeutic targets tailored to an individual’s 
particular disease subtype or presentation. 

One particularly relevant class of molecules is neurotransmitter receptors, which regulate a 
variety of biological processes known to be dysfunctional in neurodegeneration. As 
neurotransmitter receptors are mediators of many relevant neurobiological factors, studying them 
is critical for a complete mechanistic understanding and the potential treatment of abnormal 
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brain conditions such as neurodegeneration 1. For example, dopamine receptors expressed by the 
cerebral microvasculature and glial cells appear to modulate the coupling between neural activity 
and vascular response 13, which is altered in AD 14. As an organ, the brain consumes energy 
disproportionately to its mass 15. A significant fraction of this energy expenditure is attributed to 
synaptic signalling and molecular synthesis, with approximately 37% of this associated with 
postsynaptic receptors and housekeeping processes 16. The production and degradation of 
neurotransmitter receptors is a complex, dynamic process that is regulated in response to changes 
in many variables, such as receptor activation, gene expression, and external stimuli 17. Since 
these processes are energy-intensive, changes to their concentrations are likely to indicate 
relevant biological alterations, making them a potential therapeutic target. Although it is not 
primarily considered a neurotransmitter disease, AD is associated with dysfunction in several 
important neurotransmitter receptor systems. Particularly, acetylcholine and glutamate receptors 
are implicated in essential stages of a pathological neurodegenerative cascade, including 
cholinergic hydrolysis and glutamatergic excitotoxicity 1. Neurotransmitter receptor alterations 
are also suspected of being a mechanistic pathway in healthy ageing 18. Thus, integrating 
neurotransmitter receptors with macroscopic neuroimaging data has the potential to uncover 
molecular pathways important to ageing and disease progression. However, in-vivo 
neurotransmitter receptor imaging is difficult, due to the lack of specific in-vivo radiolabels 19. 
Typically, receptor mapping has involved either post-mortem histology, or expensive positron 
emission tomography (PET) imaging for a limited set of molecules with available radionuclides. 
As such, large longitudinal in-vivo datasets for several receptors would be extremely expensive 
or technologically infeasible to collect. Consequently, alterations to neurotransmitter systems 
during disease progression are not well characterized 20. 

Motivated by these concerns, we propose a whole-brain generative formulation integrating high 
resolution in vitro neurotransmitter receptor density maps and in vivo multi-modal neuroimaging. 
For the first time, this model allows a quantitative comparison of the causal role of different 
neurotransmitter receptors and neuroimaging modalities in healthy aging and neurodegeneration. 
Specifically, we fit subject-specific generative models of neuroimaging data in an aging 
population covering the AD spectrum (N=423, ADNI data), augmented with 15 whole-brain 
neurotransmitter receptor distribution patterns. We then treat the parameters of these 
personalized models as subject-specific measures representing latent receptor-neuroimaging 
interactions, and identify multi-scale interactions that explain mechanistic variability and 
cognitive heterogeneity between AD subjects. We find that receptor density maps and their 
interactions with neuroimaging significantly improve the fit of neuroimaging models, providing 
a valid proxy for true, longitudinal in-vivo receptor imaging. Examining model parameters in AD 
patients, we found an axis of variability between receptor-imaging interactions and cognitive 
decline, primarily affecting executive function. Specifically, this  axis is influenced by predictors 
of tau distribution and resting state neural activity, concordant with recent reports in late-onset 
AD 21 22. Via this axis, mechanisms of glutamatergic, cholinergic and GABAergic receptor 
interactions correlated significantly with cognitive decline in AD. In contrast, while receptor-
imaging interactions in healthy individuals did not vary significantly with cognitive status, 
mechanisms affecting cerebral blood flow (CBF) changes and gray matter atrophy accounted for 
most of the inter-individual heterogeneity. This work represents the earliest attempt to integrate 
several neurotransmitter receptors and multi-modal neuroimaging data in a universal 
formulation, representing a notable advance towards implementing individually-tailored 
neurotransmitter-based diagnosis and treatment in neurodegeneration. 
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Materials and Methods 

Ethics Statement 

The study was conducted according to Good Clinical Practice guidelines, the Declaration of 
Helsinki, US 21CFR Part 50–Protection of Human Subjects, and Part 56–Institutional Review 
Boards, and pursuant to state and federal HIPAA regulations (adni.loni.usc.edu). Study subjects 
and/or authorized representatives gave written informed consent at the time of enrollment for 
sample collection and completed questionnaires approved by each participating site Institutional 
Review Board (IRB). The authors obtained approval from the ADNI Data Sharing and 
Publications Committee for data use and publication, see documents http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf and 
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf, 
respectively. 

Data description and processing 

Study participants 

This study used longitudinal data from N=423 participants (149 healthy, 151 early mild 
cognitive impairment (EMCI), 103 late mild cognitive impairment (LMCI), and 20 AD-
diagnosed subjects at baseline) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(adni.loni.usc.edu). Demographic information is summarized in Supplementary Table S1. At 
least three different imaging modalities were acquired for each included subject (i.e. structural 
MRI, fluorodeoxyglucose PET, resting functional MRI, Arterial Spin Labeling and/or Amyloid-ß 
PET). The ADNI was launched in 2003 as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), PET, other biological markers, and clinical and 
neuropsychological assessments can be combined to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD). 

Structural MRI acquisition/processing 

Brain structural T1-weighted 3D images were acquired for all N=423 subjects. For a detailed 
description of acquisition details, see http://adni.loni.usc.edu/methods/documents/mri-protocols/. 
All images underwent non-uniformity correction using the N3 algorithm 23. Next, they were 
segmented into grey matter, white matter and cerebrospinal fluid (CSF) probabilistic maps, using 
SPM12 (fil.ion.ucl.ac.uk/spm). Grey matter segmentations were standardized to MNI space 24 
using the DARTEL tool 25. Each map was modulated in order to preserve the total amount of 
signal/tissue. Mean grey matter density and determinant of the Jacobian (DJ) 25 values were 
calculated for the regions described in Methods: Data description and processing: Receptor 
densities and brain parcellation. For each region, obtained grey matter density and DJ values 
were statistically controlled for differences in acquisition protocols. Both measurements 
provided equivalent modeling results. All the results/figures presented in this study correspond to 
the DJ, which constitutes a robust local measure of structural atrophy. 
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Fluorodeoxyglucose PET acquisition/processing 

A 185 MBq (5 ± 0.5 mCi) of [18F]-FDG was administered to each participant (N=418) and 
brain PET imaging data were acquired approximately 20 min post-injection. All images were 
corrected using measured attenuation. Also, images were preprocessed according to four main 
steps 26: 1) dynamic co-registration (separate frames were co-registered to one another lessening 
the effects of patient motion), 2) across time averaging, 3) re-sampling and reorientation from 
native space to a standard voxel image grid space (“AC-PC” space), 4) spatial filtering to 
produce images of a uniform isotropic resolution of 8 mm FWHM, and 5) affine registration to 
the participant’s structural T1 image. Next, using the registration parameters obtained for the 
structural T1 image with nearest acquisition date, all FDG-PET images were spatially 
normalized to the MNI space 24. Regional standardized uptake value ratio (SUVR) values for the 
regions considered were calculated using the cerebellum as reference region. 

Resting fMRI acquisition/processing 

Resting-state functional images were obtained using an echo-planar imaging sequence on a 3.0-
Tesla Philips MRI scanner for N=127 subjects. Acquisition parameters were: 140 time points, 
repetition time (TR)=3000 ms, echo time (TE)=30 ms, flip angle=80°, number of slices=48, slice 
thickness=3.3 mm, in plane resolution=3 mm and in plane matrix=64×64. Pre-processing steps 
included: 1) motion correction, 2) slice timing correction, 3) alignment to the structural T1 
image, and 4) spatial normalization to MNI space using the registration parameters obtained for 
the structural T1 image with the nearest acquisition date, and 5) signal filtering to keep only low 
frequency fluctuations (0.01–0.08 Hz) 27. For each brain region, our model requires a local (i.e. 
intra-regional, non-network) measure of functional activity, in order to maintain mechanistic 
interpretability and to prevent data leakage of network information into local model terms 
(described further in Receptor-Enriched Multifactorial Causal Model). Due to its high 
correlation with glucose metabolism 28 and validation as an AD-sensitive metric 29 30, we 
calculated regional fractional amplitude of low-frequency fluctuation (fALFF)  31 as a measure of 
functional integrity. 

Furthermore, while our model uses structural connectivity as the network along which inter-
region propagation occurs, we also calculated and used a functional connectome, as the average 
of the absolute Pearson correlation matrices across all healthy subjects with fMRI data (N=42). 
Based on this, we compared model performance using structural and functional connectivity, 
characterizing the choice of connectivity metrics (see Multi-scale interactions involving 
neurotransmitter receptors are important to explaining multifactorial brain reorganization and 
Supplementary Fig. S8). 

ASL acquisition/processing 

Resting Arterial Spin Labeling (ASL) data were acquired using the Siemens product PICORE 
sequence for N=195 subjects. Acquisition parameters were: TR/TE=3400/12 ms, 
TI1/TI2=700/1900 ms, FOV=256 mm, 24 sequential 4 mm thick slices with a 25% gap between 
the adjacent slices, partial Fourier factor=6/8, bandwidth=2368 Hz/pix, and imaging 
matrix=64×64. For preprocessing details see ”UCSF ASL Perfusion Processing Methods” in 
adni.loni.usc.edu. In summary, main preprocessing steps included: 1) motion correction, 2) 
perfusion-weighted images (PWI) computation, 3) intensity scaling, 4) CBF images calculation, 
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5) alignment to the structural T1 image, and 6) spatial normalization to MNI space 24 using the 
registration parameters obtained for the structural T1 image with the nearest acquisition date, and 
6) mean CBF calculation for each considered brain region. 

Amyloid-ß PET acquisition/processing 

A 370 MBq (10 mCi ± 10%) bolus injection of AV-45 was administered to each participant 
(N=422), and 20 min continuous brain PET imaging scans were acquired approximately 50 min 
post-injection. The images were reconstructed immediately after the 20 min scan, and when 
motion artifact was detected, another 20 min continuous scan was acquired. For each individual 
PET acquisition, images were initially preprocessed according to four main steps 26: 1) dynamic 
co-registration (separate frames were co-registered to one another lessening the effects of patient 
motion), 2) across time averaging, 3) re-sampling and reorientation from native space to a 
standard voxel image grid space (“AC-PC” space), 4) spatial filtering to produce images of a 
uniform isotropic resolution of 8 mm FWHM, and 5) affine registration to the participant’s 
structural T1 image. Next, using the registration parameters obtained for the structural T1 image 
with the nearest acquisition date, all amyloid images were spatially normalized to the MNI space 
24. Considering the cerebellum as an Aß non-specific binding reference, SUVR values for the 
regions were calculated. 

Tau PET acquisition/processing 

A 370 MBq/kg bolus injection of tau specific ligand 18F-AV-1451 ([F- 18] T807) was 
administered to each participant (N=238), and 30 min (6 × 5 min frames) brain PET imaging 
scans were acquired starting at 75 min post-injection (N = 200). Images were preprocessed 
according to four main steps 26: 1) dynamic co-registration (separate frames were co-registered to 
one another lessening the effects of patient motion), 2) across time averaging, 3) re-sampling and 
reorientation from native space to a standard voxel image grid space (“AC-PC” space), 4) spatial 
filtering to produce images of a uniform isotropic resolution of 8mm FWHM, and 5) affine 
registration to the participant’s structural T1 image. Next, using the registration parameters 
obtained for the structural T1 image with the nearest acquisition date, all tau images were 
spatially normalized to the MNI space 24. Considering the cerebellum as a non-specific binding 
reference, SUVR values for the grey matter regions considered were calculated. 

Receptor densities and brain parcellation 

In-vitro quantitative receptor autoradiography was applied to measure the densities of 15 
receptors in 44 cytoarchitectonically defined cortical areas spread throughout the brain 32. These 
receptors span major neurotransmitter systems, and show significant regional variability across 
the brain. Brains were obtained through the body donor programme of the University of 
Düsseldorf. Donors (three male and one female; between 67 and 77 years of age) had no history 
of neurological or psychiatric diseases, or long-term drug treatments. Causes of death were non-
neurological in each case. Each hemisphere was sliced into 3 cm slabs, shock frozen at -40C, and 
stored at -80C. 

Receptors for the neurotransmitters glutamate (AMPA, NMDA, kainate), GABA (GABAA, 
GABAA-associated benzodiazepine binding sites, GABAB), acetylcholine (muscarinic M1, M2, 
M3, nicotinic α4β2), noradrenaline (α1, α2), serotonin (5-HT1A, 5-HT2), and dopamine (D1) were 
labeled according to previously published binding protocols consisting of pre-incubation, main 
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incubation and rinsing steps 32. The ligands used are summarized in Supplementary Table S3. 
Receptor densities were quantified by densitometric analysis of the ensuing autoradiographs, and 
areas were identified by cytoarchitectonic analysis in sections neigbouring those processed for 
receptor autoradiography, and which had been used for the visualization of cell bodies 33.  

A brain parcellation was then defined with the aid of the Anatomy Toolbox 34 using 44 regions 
of interest for which receptor densities were available 35. This parcellation was based on areas 
identified by cortical cytoarchitecture, as well as other cyto- and receptor-architectonically 
defined regions with receptor measurements (regions are summarized in Supplementary Table 
S4). These 44 regions were mirrored across left and right hemispheres for a total of 88 brain 
regions in our parcellation. For each receptor, regional densities were normalized using the mean 
and standard deviation across all 88 brain regions. 

The structural T1 images of the Jülich 34 and Brodmann 36 brain parcellations were registered to 
the MNI ICBM152 T1 template using FSL 5.0's FLIRT affine registration tool 37, and the 
obtained transformations were used to project the corresponding parcellations to the MNI 
ICBM152 space (using nearest neighbor interpolation to conserve original parcellation values). 
In the MNI ICBM152 space, voxels corresponding to the cytoarchitectonically-defined regions 
from 35 were identified from the regions in the Anatomy Toolbox, with the remaining Brodmann 
regions (Supplementary Table S4) filled in using the Brodmann brain atlas. The resulting 
parcellation of 88 brain regions in the common template space was then used to extract whole-
brain multi-modal neuroimaging data and estimate the diffusion-based connectivity matrix, as 
described in Materials and Methods: Multimodal neuroimaging data and Materials and 
Methods: Anatomical connectivity estimation.  

Anatomical connectivity estimation 

The connectivity matrix was constructed using DSI Studio (http://dsi-studio.labsolver.org). A 
group average template was constructed from a total of 1065 subjects 38. A multishell diffusion 
scheme was used, and the b-values were 990, 1985 and 2980 s/mm2. The number of diffusion 
sampling directions were 90, 90, and 90, respectively. The in-plane resolution was 1.25 mm. The 
slice thickness was 1.25 mm. The diffusion data were reconstructed in the MNI space using q-
space diffeomorphic reconstruction 39 to obtain the spin distribution function 40. A diffusion 
sampling length ratio of 2.5 was used, and the output resolution was 1 mm. The restricted 
diffusion was quantified using restricted diffusion imaging 41. A deterministic fiber tracking 
algorithm 42 was used. A seeding region was placed at whole brain. The QA threshold was 
0.159581. The angular threshold was randomly selected from 15 degrees to 90 degrees. The step 
size was randomly selected from 0.5 voxel to 1.5 voxels. The fiber trajectories were smoothed by 
averaging the propagation direction with a percentage of the previous direction. The percentage 
was randomly selected from 0% to 95%. Tracks with length shorter than 30 or longer than 300 
mm were discarded. A total of 100000 tracts were calculated. A custom brain atlas based on 
cytoarchitectonic regions with neurotransmitter receptor data 35 was used as the brain 
parcellation, as described in Materials and Methods: Data description and processing: Receptor 
densities and brain parcellation, and the connectivity matrix was calculated by using count of 
the connecting tracks. 
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Multimodal neuroimaging data 

After pre-processing ADNI neuroimaging data for all 6 modalities and extracting it for the 
cytoarchitectonically defined atlas described in Materials and Methods: Data description and 
processing: Receptor densities and brain parcellation, subjects lacking sufficient longitudinal or 
multimodal data were discarded. The disqualification criteria were i) fewer than 4 imaging 
modalities with data, or ii) fewer than 3 longitudinal samples for all modalities. For the 
remaining subjects, missing neuroimaging modalities at each time point with actual individual 
data were imputed using trimmed scores regression with internal PCA  43. Imputation accuracy 
was validated using 10-fold cross-validation, showing a strong capacity to recover the real data 
(correlation values: rCBF = 0.44, ramyloid = 0.60, rneural activity = 0.95, rgray matter = 0.80, rmetabolism = 
0.81, rtau = 0.71; all P<10-6). Finally, a total of 423 subjects were left with all 6 neuroimaging 
modalities with an average of 4.75 (±2.71) time points. We used the mean and variance of each 
neuroimaging modality across all regions and healthy subjects to calculate z-scores of 
neuroimaging data across all  (healthy, MCI, and AD) subjects. Please see Supplementary Tables 
S1-S2 for demographic characteristics, and Materials and Methods: Multimodal neuroimaging 
data and Supplementary Fig. S1 for a detailed flowchart of the selection and analysis of the 
participants. 

Cognitive scores 

We used multiple composite scores derived from the ADNI neuropsychological battery. 
Protocols for deriving each score are described in the respective ADNI protocols documentation 
or relevant publication for executive function 44, memory 44, language 45, visuospatial 
functioning 45, mini-mental state examination (MMSE) 46, and the Alzheimer’s Disease 
Assessment Scale (ADAS11/13) 46. With an average of 7.27 ± (2.55) evaluations per subject in 
our cohort (N=423), we calculated cognitive decline as the linear best fit rate of change of each 
cognitive score with respect to examination date. Thus, for each patient, cognitive decline was 
represented by a set of 7 rates of change. 

Receptor-Enriched Multifactorial Causal Model (re-MCM) 

Under the framework of the multifactorial causal model (MCM) introduced in 11, we consider the 
brain as a dynamical system of anatomically-connected regions defined by interacting, 
neuroimaging-derived biological factors. These biological factors are tissue structure, neuronal 
activity, blood flow, metabolism, and the accumulation of misfolded proteins (amyloid, tau), 
quantified by structural MRI, functional MRI, ASL MRI, FDG PET, amyloid PET and tau PET, 
respectively. Each biological factor 𝑚 at a particular brain region 𝑖 is represented by a single 
variable 𝑆𝑚,𝑖, whose rate of change is a function of i) local states of other factors, and ii) the 
propagation of the same factor across anatomically-connected regions. Thus, in our model, 
pathological factors can propagate throughout the brain, but any direct interactions between 
factors must occur locally within a region. 

In this study, for a given subject, and at each of the 𝑁ROI = 88 brain regions, the system is 
defined by 𝑁fac = 6 state variables or factors. Each factor 𝑆𝑚,𝑖 represents the 𝑚th neuroimaging 
modality at the 𝑖th brain region. Factor dynamics can be decomposed into local effects due to 
factor-factor interactions and network propagation of the factor. In general, the differential 
equation describing this coupled system for a given subject is: 
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𝑑𝑆𝑚,𝑖(𝑡)
𝑑𝑡

= 𝑓(𝐒∗,𝑖(𝑡))
Local Effects

+ 𝑔(𝐒𝑚,∗(𝑡),𝐶𝑖↔∗
Inter-region Propagation

),                                                                                    (1) 

where 𝑓 and 𝑔 are functions that determine the effects of local multi-modal interactions and 
propagation, respectively, and 𝐶𝑖↔∗ is the net connectivity of region 𝑖. Here, we extend the basic 
MCM formulation (Equation 1) to include the local effects of neurotransmitter receptors. With 𝐑 
being a 𝑁rec × 𝑁ROI matrix of spatial maps, composed of local densities 𝑟𝑘,𝑖 of a receptor 𝑘 at a 
region 𝑖, and 𝐑∗,𝑖  being a 𝑁rec × 1 vector of all receptor densities in region 𝑖, we define the 
general form of the receptor-enriched MCM (re-MCM) as: 
𝑑𝑆𝑚,𝑖(𝑡)

𝑑𝑡
= 𝑓(𝐒∗,𝑖(𝑡),𝐑∗,𝑖) + 𝑔(𝐒𝑚,∗(𝑡),𝐶𝑖↔∗).                                                                               (2) 

The first term 𝑓(𝐒∗,𝑖(𝑡),𝐑∗,𝑖) represents the local component, which is the interaction between 
the factor 𝑚 and all other factors in region 𝑖, mediated by the local densities of receptors in that 
region. The second term 𝑔(𝐒𝑚,∗(𝑡),𝐶𝑖↔∗) represents the contribution due to network propagation 
of the factor 𝑚, mediated by the net anatomical connectivity 𝐶𝑖↔∗ of the region 𝑖. The functions 
𝑓 and 𝑔 in Equation 2 define the global imaging factor dynamics, which are valid for all brain 
regions. Thus, regional differences are due to different imaging factor states, receptor 
distributions and anatomical connectivity, but the mechanisms of their interactions, represented 
by 𝑓 and 𝑔, are consistent across the whole brain. 

Given the decades-long temporal scale of neurodegeneration compared to the relatively short few 
months between neuroimaging samples, we assume a locally linear, time-invariant dynamical 
system: 

𝑑𝑆𝑖
𝑚(𝑡)
𝑑𝑡

= ∑ 𝛼𝑛→𝑚𝑁fac
𝑛=1 𝑆𝑛,𝑖(𝑡) + ∑ 𝛼𝑘𝑚

𝑁rec
𝑘=1 𝑟𝑘,𝑖 + 𝛼prop

𝑚 ∑ �𝐶𝑗→𝑖𝑆𝑚,𝑗(𝑡) − 𝐶𝑖→𝑗𝑆𝑚,𝑖(𝑡)�
𝑁ROI
𝑗=1,𝑗≠𝑖 ,        (3) 

where 𝐶𝑖→𝑗 is the directed anatomical connectivity from region 𝑖 to 𝑗, and 𝑑𝑆𝑚,𝑖(𝑡)
𝑑𝑡

 was defined by 
the local rate of change of neuroimaging data for successive longitudinal samples at times 𝑡′ and 
𝑡: 
𝑑𝑆𝑚,𝑖(𝑡)

𝑑𝑡
= 𝑆𝑚,𝑖(𝑡)−𝑆𝑚,𝑖(𝑡′)

𝑡−𝑡′
.                                                                                                                 (4) 

In this work, we expand the local effect term to include i) direct factor-factor effects, ii) 
interaction terms mediated by 𝑁rec = 15 receptor types, and iii) direct receptor effects (Equation 
3) on the neuroimaging factor rate of change 𝑑𝑆𝑚,𝑖

𝑑𝑡
. The local factor effects term n Equation 3 is 

now expanded: 

𝛼𝑛→𝑚 = 𝛼0𝑛→𝑚
Direct Factor-Factor Term

+ ∑ 𝛼𝑘𝑛→𝑚
𝑁rec
𝑘 𝑟𝑖𝑘

Interaction Term
.                    (5) 

Although the receptor maps 𝐑 are constant templates with spatial but no temporal variation, their 
interaction terms add a dynamic element, as they imply a regional heterogeneity to neuroimaging 
predictors that is not directly explained by the direct receptor term in Equation 3. For instance, 
we might notice that (hypothetically) the interaction between a glutamatergic receptor and 
functional activity is a significant predictor of gray matter atrophy. Whether or not functional 
activity or the glutamatergic receptor map are significant predictors on their own, the 
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significance of the interaction term would imply that the spatial distribution template of the 
glutamatergic receptor is informative when combined with functional activity. 

Additionally, for propagation, we consider only symmetric connectivity 𝐶𝑗↔𝑖 between regions 𝑖 
and 𝑗, using a template connectivity matrix for all subjects, as described in Anatomical 
connectivity estimation, to give the propagation term 

𝑝𝑚,𝑖(𝑡) = ∑ 𝐶𝑗↔𝑖
𝑁ROI
𝑗=1,𝑗≠𝑖 �𝑆𝑚,𝑗(𝑡) − 𝑆𝑚,𝑖(𝑡)�.                                                                                (6) 

This reduces the net propagation of a factor 𝑚 to a region 𝑖 to a single propagation term. A more 
complete treatment may consider vascular connectivity as well 11 4, as this measure may be more 
relevant for different processes (such as functional activity, CBF and metabolism, respectively).  
𝑑𝑆𝑚,𝑖(𝑡)

𝑑𝑡
= ∑ �𝛼0𝑛→𝑚 + ∑ 𝛼𝑘𝑛→𝑚

𝑁rec
𝑘 𝑟𝑘,𝑗�

𝑁fac
𝑛=1 𝑆𝑛,𝑖(𝑡) + ∑ 𝛼𝑘𝑚

𝑁rec
𝑘=1 𝑟𝑘,𝑖 + 𝛼prop

𝑚 𝑝𝑚,𝑖(𝑡)                       (7) 

Formulated in this way, each model contains a set of 𝑁params = 𝑁fac × (1 + 𝑁rec) + 𝑁rec + 1 =
113 parameters {𝛼}𝑥𝑚 for subject 𝑥 and factor 𝑚 (or 678 total parameters per subject). Apart 
from the propagation term, which is specific to the imaging modality output of the model, all 
predictors are identical for the 6 neuroimaging modalities. That is, a common set of receptor 
maps, multi-modal neuroimaging states, and pseudo-personalized receptor-imaging interactions 
are used as predictors. However, based on their respective effects on each output modality, we 
obtain 678 distinct biological parameters per subject, each with a distinct mechanistic 
interpretation (e.g. the effect of neural activity on metabolism or the effect of neural activity on 
CBF). We then perform linear regression, using the terms in Equation 7 as predictors with 
longitudinal ADNI neuroimaging samples 𝑆𝑚,𝑖(𝑡) and receptor maps 𝐑, to estimate subject- and 
modality-specific parameters {𝛼}𝑥𝑚 for each subject 𝑥 and modality 𝑚. Separate regression 
models were built for i) each of the N=423 qualifying subjects, and ii) each of the 6 
neuroimaging factors. These subjects were drawn from the ADNI dataset with at least 4 recorded 
neuroimaging modalities, and at least 3 longitudinal samples for at least one modality. 

To evaluate model fit, we calculate the coefficient of determination (𝑅2) for each subject. This is 
summarized by modalities in Fig. 2. With the data vector 𝐲 with elements 𝑦𝑚,𝑖,𝑡 = 𝑑𝑆𝑚,𝑖(𝑡)

𝑑𝑡
, and 

model predictions 𝐲� with 𝑦� = 𝑦�𝑚,𝑖,𝑡, the coefficient of determination is 

𝑅2 = 1 − ∑ (𝑖,𝑡 𝐲𝑚,𝑖,𝑡−𝐲�𝑚,𝑖,𝑡)2

∑ (𝑖,𝑡 𝐲𝑚,𝑖,𝑡−<𝐲𝑚>)2
,                                                                                                            (8) 

where < 𝐲𝑚 > is the mean of neuroimaging data for a particular modality 𝑚 across all brain 
regions and longitudinal samples. 

Statistical analysis 

Model fit 

Personalized model fit quantified by the coefficient of determination (R2) was evaluated for each 
subject and neuroimaging modality. F-tests were used to compare receptor-neuroimaging (113 
parameters per modality) and neuroimaging-only (8 parameters per modality) to fitting 
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neuroimaging data in each subject (F-test with p<0.05). The model fit (R2) was evaluated for 
each subjects’ neuroimaging models using 1000 iterations of randomly permuted receptor maps 
(with receptor densities shuffled across regions independently for each receptor type), and we 
calculated the p-value of the true receptor data model R2 compared to this distribution. 

Biological parameters and relationship with cognition 
We aimed to further clarify how the cognitive decline observed in AD progression is modulated 
by specific neurotransmitter receptor systems and their causal interactions with macroscopic 
biological factors (i.e. amyloid, tau, CBF, neural activity, glucose metabolism and gray matter 
density). As changes in several receptor densities are difficult to image in-vivo, we analyzed the 
receptor terms from our personalized re-MCM approach as a proxy for the importance of each 
particular receptor’s distribution or interactions in predicting multi-domain cognitive 
deterioration in AD. To consider the inter-subject variability in the diseased population, we used 
a combination of cognitive assessment scores as disease severity descriptors (i.e. executive 
function, memory, language, visuospatial functioning, MMSE, ADAS 11 and ADAS 13; see 
Materials and Methods: Cognitive Scores).  

We aimed to robustly identify significant and relevant re-MCM parameters that represent 
molecular-neuroimaging interactions associated with cognitive decline, using a data-driven 
multivariate cross-correlation analysis in combination with a randomized permutation test to 
ensure the statistical stability of our results. By concurrently analyzing the multivariate changes 
across all re-MCM parameters, this multidimensional analysis searched for large clusters of 
functionally related receptor-neuroimaging interaction mechanisms statistically associated with 
AD-associated cognitive changes. In other words, the SVD method used here (and its associated 
permutation test) identified the specific set of receptors and/or imaging features that were 
maximally related to cognitive decline. To this end, we selected a clinical subgroup of interest 
(either N=112 cognitively healthy subjects or N=25 AD patients from the N=423 total subjects 
with sufficient multi-modal neuroimaging data), and performed the following procedure on the 
original set of 678 re-MCM parameters and 7 rates of cognitive decline per subject (executive 
function, memory, language, visuospatial functioning, MMSE, and ADAS11/13): 

1. To identify correlated axes of variation, we performed principal component analysis (PCA) 
on all 678 biological parameters separately on the healthy and AD subjects, and ranked 
parameters based on the variance explained in the first principal component (PC). 

2. To relate biological parameters to cognition, we performed singular value decomposition 
(SVD) on the cross-covariance matrix between significant parameters and rates of cognitive 
decline for AD patients, after adjusting for covariates (baseline age, education and gender). 
SVD allows us to simultaneously reduce the dimensionality of the 7 cognitive assessments 
and to rank parameters by their variation with cognition. Where 𝑋 is a matrix of z-scores of 
each re-MCM parameter for this clinical subgroup and 𝑌 is a matrix of the corresponding z-
scores of the rates of clinical decline, the cross-covariance matrix 𝐶 = 𝑋𝑌′ is decomposed 
as 

        𝐶 = 𝑈𝑆𝑉′                                                                                                                             (9) 

where 𝑈 and 𝑉 are orthonormal matrices of spatial loadings for the coefficients and 
cognitive scores, respectively, and 𝑆 is a (diagonal) matrix of singular values {𝑠1, … , 𝑠7}.  
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3. To evaluate the significance of SVD components, we performed permutation tests by 
shuffling the mapping between subjects’ re-MCM parameters and cognitive scores, and 
repeating SVD. To compare permuted iterations, we performed a Procrustes transformation 
to align the axes of singular components. We kept only those singular components that are 
significant 𝑝 < 0.05) compared to 1000 permutation iterations of SVD components. 

4. We performed 1000 iterations of bootstrapping on the parameters 𝑋, and discarded the 
parameters with non-significant 95% confidence intervals. 

5. For the remaining significant re-MCM parameters and SVD components, we computed the 
variance explained per parameter. We then summed the contribution of each significant 
parameter 𝑗 to each significant SVD component 𝑖, weighted by the fraction of total variance 
explained by the 𝑖th component  

        𝑟𝑗
2,param,sig = ∑

𝑈𝑖,𝑗
2

∑ 𝑈𝑖,𝑗
2

𝑗
Parameter 

contribution

𝑁SVD,sig
𝑖

𝑠𝑖
2

∑ 𝑠𝑗
2

𝑗
.

Singular value
contribution

                                                                           (10) 

Inter-subject mechanistic variability 
To explore the potential clinical utility of our approach at the personalized level, we performed a 
quantitative comparison between diseased participants in terms of their inter-subject variability 
across different receptor systems. To this end, we defined individual-specific “fingerprints” of 
the alterations in receptor-modulated synergistic interactions. Specifically, for each participant i 
and receptor system r, we calculated the Mahalanobis distance 𝐷𝑖,𝑟of re-MCM parameters 𝛼𝑖,𝑟 
associated with cognitive decline in our AD cohort (Fig. 4; Supplementary Table S5). This 
distance is calculated between subject’s parameters 𝛼𝑖,𝑟, and the distribution of healthy subjects’ 
parameters for receptor r, with means  𝜇𝑖,𝑟 and a covariate matrix 𝑺−𝟏, 

 𝐷𝑖,𝑟 = �(𝛼𝑖,𝑟 − 𝜇𝑖,𝑟)𝑇𝑺−𝟏(𝛼𝑖,𝑟 − 𝜇𝑖,𝑟).                                                                                (11)    

To quantify the relationship between this summary metric of receptor alterations and specific 
cognitive domains, we performed multivariate linear regression on rates of cognitive decline 
(adjusted by age, gender, education level and APOE4 status; N=25) using the z-scores of the 
Mahalanobis distances for  the 6 receptor systems. We also estimated the explanatory importance 
of each receptor system, as the percentage improvement in model fit (R2) by including a 
particular receptor Mahalanobis distance. 

Data and code availability 

The three datasets used in this study are available from the ADNI database (neuroimaging and 
cognitive evaluations; http://www.adni.loni.usc.edu), the HCP database (tractography template 
for connectivity estimation; http://www.humanconnectomeproject.org/), and receptor density 
data published in 35. We anticipate that the re-MCM method will be released soon as part of our 
available and open-access, user-friendly software 47 (https://www.neuropm-lab.com/neuropm-
box.html). 
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Results 

Capturing receptor-mediated multifactorial brain reorganization 

Here, we aimed to develop a multi-scale generative brain model linking regional receptor 
densities (for 15 neurotransmitter receptors) and multimodal neuroimaging-based factors (for six 
biological variables) in a flexible, unified formulation. We aimed to use this mathematical 
framework to infer receptor alterations associated with the long-term physiological changes of 
complex brain reorganization processes (namely aging and neurodegeneration) and their 
cognitive impact. Because changes in receptor concentrations are difficult to measure in vivo, our 
receptor density maps were composed of group-averaged templates, with spatial distributions of 
receptors but no inter-individual variability or intra-individual longitudinal progression. 
Consequently, we use the predictive importance of receptor distributions in generative models of 
abnormal neuroimaging-derived biological variables as a proxy for alterations in either receptor 
density or mechanistic interactions with other imaging-derived variables.  

We proceeded to characterize the multifactorial brain dynamics of each participant using the 
developed neurotransmitter receptor-enriched multifactorial causal model (re-MCM; Fig. 1) and 
the quality-controlled, multi-modal longitudinal neuroimaging data (described in Materials and 
Methods: Data description and processing). For each participant with sufficient longitudinal and 
multi-modal data (N=423), the re-MCM was fit for all 6 neuroimaging modalities, to obtain 
receptor-imaging biological parameters reflecting local factor-factor interactions mediated by 
neurotransmitter receptor distributions (e.g. amyloid-tau interactions modulated by NMDA 
receptors) and the spreading of effects via anatomical networks (e.g. amyloid and tau 
propagation along white matter connections).  
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Figure 1: Neurotransmitter receptor-enriched multifactorial causal modeling. a) For each 
subject with longitudinal neuroimaging data, changes between subsequent samples in each 
neuroimaging modality are decomposed into local synergistic effects due to i) the direct 
influence of all neuroimaging-quantified biological factors, ii) receptor density distributions, and 
iii) multi-scale receptor-imaging interactions, and iv) global network-mediated intra-brain 
propagation. Combining this data across (NROI=88) brain regions and multiple neuroimaging 
samples results in a multivariate regression problem to identify the subject-specific parameters 
{α}. b) At a group level, these personalized model parameters are then compared to subjects’ 
cognitive assessments (specifically, the rates of decline for 7 composite cognitive scores 
described in Materials and Methods: Cognitive scores) using a singular value decomposition 
(SVD) procedure on the cross-covariance matrix, to identify multi-scale receptor-neuroimaging 
interactions that are robustly correlated with the severity of cognitive symptoms in AD (outlined 
in Materials and Methods: Biological parameters and relationship with cognition). c) In the 
context of personalized applications, inter-subject variability in receptor-imaging interactions can 
be used as clinical “fingerprints” of molecular alterations representing different disease 
mechanisms. Patients can then receive individually-tailored treatment plans to address their 
underlying etiology, based on their specific fingerprints. For example, patients with greater 
vascular alterations may benefit more from lifestyle interventions such as physical exercise, 
whereas patients with greater receptor alterations may require neurotransmitter-based medication 
(depending on the most affected receptor). Furthermore, treatment plans can be continually 
adjusted with follow-up visits. 
 

Multi-scale interactions involving neurotransmitter receptors are important to 
explaining multifactorial brain reorganization 

Firstly, we proceeded to evaluate the ability of the re-MCM approach to fit longitudinal 
neuroimaging data with and without receptor maps and multi-scale receptors-imaging 
interactions (Fig. 2a-b). For each of the six neuroimaging modalities per subject, we calculated 
the coefficient of determination (R2) as a measure of model accuracy for explaining the real 
imaging-specific longitudinal changes. While model accuracy varied by imaging modality, we 
observed that the personalized models including receptor-neuroimaging interactions explained 
approximately 70% (± 20%) of observed variance in all modalities (Fig. 2a).  

Inter-region propagation in our model occurs along structural connectivity. While functional 
connectivity can be a better predictor of fMRI data, structural connectivity is a better measure of 
the actual physical substrate connecting brain regions. Nevertheless, to explore the effects of 
alternate connectivity measures, we repeated our modeling steps using functional connectivity in 
place of the structural connectivity derived from diffusion-MRI tractography. While the 
connectivity matrices differed, we found almost no change in model fit or parameters across 
subjects, with a high correlation r>0.99 of model R2 (P<0.001) across all modalities 
(Supplementary Fig. S8). We attribute this to the dominance of intra-regional effects in our 
model, with many interacting local receptor and neuroimaging predictors, and also to the shared 
information in structural and functional connectivity 48. 

Next, to evaluate the relevance of receptor densities and receptor-mediated interactions between 
biological factors quantified by imaging (e.g. amyloid-tau interaction modulated by GABA), we 
compared the model fit of full re-MCM models (incorporating receptor-factor interactions as 

Page 15 of 39 
 



previously described) with restricted models (using only neuroimaging predictors and network 
propagation). The models including receptor maps and receptor-imaging interactions explained, 
on average, more than twice as much of the variance in longitudinal neuroimaging changes 
(Supplementary Table S7; P<0.001 with a two-sample t-test). To account for the greater 
explanatory power of a larger model with more parameters, we quantified the improvement in 
individual neuroimaging modeling due to the receptor terms, we conducted F-tests between the 
full re-MCM formulation (Fig. 2a) and the restricted model (Fig. 2b). As hypothesized, we 
observed that the inclusion of receptor maps and multi-scale (receptor-imaging) interaction terms 
significantly improved (P<0.05) the model accuracy for 86.8%-99.0% of the subjects (Fig. 2c) 
while accounting for the additional degrees of freedom in the model with receptors. While the 
inclusion of receptors and receptor-imaging interactions improved model performance for all 
subjects and modalities, this improvement was not always significant, most notably in 13.2% of 
gray matter atrophy models (Fig. 2c). We attribute this to the use of a shared, group-averaged set 
of neurotransmitter receptors templates (further tested below).  

Having established that receptor maps and receptor-neuroimaging interactions do significantly 
improve personalized neuroimaging models, we then performed a permutation analysis on the 
receptor maps to test the informativeness compared model performance using averaged receptor 
templates to a set of null receptor maps. For each subject, the model fitting procedure was 
repeated using 1000 random permutations of the spatial receptor maps. Receptor densities were 
shuffled across regions of interest, independently for each receptor. We then compared the 
distribution of model fit (R2) using these randomly permuted data with the R2 obtained for the 
models using the true receptor templates. We observed that the significance of the improvement 
in model fitting over randomized receptor maps varied by imaging modality, for example, being 
lower for metabolism than for neural activity (Fig. 2d). Nevertheless, the true receptor templates 
perform significantly better in approximately 80%-98% of all subjects, depending on the 
modality. The gain in model performance by imaging modality is presented in Supplementary 
Table S8, and generally fell between 15.6% ± 13.3% (p<0.0417) for glucose metabolism to 
22.3% ± 15.0% (p<0.003) for neural activity. Notably, the modalities for which true receptor 
data was the least informative (metabolism and gray matter atrophy), were also the ones for 
which augmenting the model with receptor data provided the least significant improvements 
across all subjects. Furthermore, we compared the proportion of subjects with significant 
improvements over null maps across diagnoses, shown in Supplementary Fig. S7. On average 
across modalities, 96.2% of healthy subjects’ models were significantly improved, wheras this 
was progressively lower for MCI subjects (89.4% for early MCI and 89.8% for late MCI) and 
AD patients (78.3%). 

We hypothesize that accentuated aging processes and neurodegeneration may alter receptor 
densities or interaction mechanisms in each individual, requiring the biological parameters in our 
personalized models to  compensate. Identifying these specific alterations is the subject of the 
remaining subsections.  
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Figure 2: Receptor density templates and multi-scale receptor-neuroimaging interactions 
significantly improve individual longitudinal neuroimaging models. The improvement in 
neuroimaging modeling was evaluated in terms of i) including direct receptor terms and 
receptor-neuroimaging interactions in the model, and ii) using true receptor density maps 
compared to randomized, spatially permuted maps. The histograms in (a) and (b) show the 
distribution of the coefficient of determination (R2) of N=423 individual models of neuroimaging 
changes including (a) and excluding (b) receptor predictors. Subject-specific linear models fit 
neuroimaging changes reasonably well, with a significant improvement by including receptor 
terms. This is confirmed by the F-test between subject models with and without receptor 
densities and receptor-imaging interactions (113 and 8 parameters, respectively). The proportion 
of subjects for whom the F-statistic is above the critical threshold is shown in (c). This critical 
threshold corresponds to a statistically significant (P<0.05) improvement due to the receptor 
terms in the re-MCM model, accounting for the increase in adjustable model parameters. 
Furthermore, to validate the benefit of the receptor templates over randomized null maps, re-
MCM models were fit with 1000 spatially-shuffled receptor maps for each subject. The p-value 
of the model fit (R2) using true receptor templates compared to the distribution of R2 of models 
using randomized templates was calculated for each subject. The proportion of subjects for 
whom the true receptor maps resulted in a statistically significant improvement in model fit 
(P<0.05) is shown in (d).  The results of these two analyses in (c) and (d) validate the use of 
averaged receptor templates in personalized neuroimaging models. 
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Characterizing receptor-imaging interaction variability in healthy aging and AD 

We aimed to characterize the variability in receptor-mediated brain reorganization in the studied 
healthy aging (N=112) and AD subpopulations (N=25). In the healthy population, we performed 
a principal component analysis (PCA) on all re-MCM biological parameters (678 in total) across 
the 6 neuroimaging modalities, finding that the first principal component (PC1) is able to explain 
97.3% of the group’s variance. The most variable parameters contributing to PC1 belonged to 
CBF and gray matter models (Fig. 3a). That is, if current CBF in a region becomes less important 
(relative to other re-MCM predictors) to predicting its future change, gray matter density also 
becomes less important to predicting future atrophy, whereas the current level of amyloid 
becomes more important to predicting future accumulation. These results suggest that, in the 
absence of an influential disease process (e.g. neurodegeneration), inter-individual differences in 
the long-term brain reorganization are mechanistically driven by receptor-mediated processes 
affecting CBF and gray matter density. Most prominently, these include the CBF effects due to 
interactions between the dopaminergic D1 receptor and amyloid distribution (2.9%), the 
adrenergic α1 receptor and gray matter density (2.7%), the GABAA benzodiazepine site and 
neural activity (GABAA/BZ; 2.0%), and the GABAA receptor and gray matter density (1.8%). 
Additionally, the interaction between the glutamatergic AMPA receptor and amyloid distribution 
as a predictor of gray matter atrophy (2.3%) are also notably variable.  

In the AD group (N=25), with the presence of a neurodegenerative condition, the first PC of the 
re-MCM biological parameters only explained 26.2% of the population variability (with 
subsequent PCs explaining less than 10% each). Along this main axis of variability, inter-
individual differences are primarily due the effects of neural activity as a direct or receptor-
mediated predictor of tau accumulation (Fig. 3b; 7.9% of PC1 via the direct term, 7.3% via 
adrenergic α1receptors, 5.7% via serotonergic 5HT1A receptors, 4.0% via dopaminergic D1 
receptors, and 3.7% via cholinergic α4β2 receptors). The next subsection covers a deeper analysis 
of the AD group. 

Interestingly, in the healthy subpopulation, when the individually small contributions of all 
receptor-terms for each target neuroimaging modality were summed (Fig 3c), we observed that 
the receptor mechanisms that affect CBF changes, gray matter atrophy and amyloid 
accumulation were the most variable, with GABAergic and serotonergic mechanisms 
dominating. For example, combined variability due to GABAergic (9.7% of PC1), serotonergic 
(8.7% of PC1) and adrenergic (primarily α1 receptors; 7.3% of PC1) interactions predicting CBF 
changes accounted for approximately a quarter of variability across all 6 neuroimaging 
modalities and 678 total parameters (25.7% of PC1). As seen in Fig 3b, the main sources of 
biological parameter variability in AD (Fig 3d) involved neural activity predictors of tau 
accumulation. Predictors of tau accumulation involving adrenergic (9.9% of PC1), serotonergic 
(9.6%), cholinergic (6.6%) and dopaminergic (4.7%) interactions were the most variable. 
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Figure 3: Variability of biological parameters across healthy and AD subjects. a-b) PCA-
based sources of variability in the 678 re-MCM parameters across healthy subjects (N=112) and 
AD patients (N=25), respectively. The first principal component (PC1) captured 97.3% of the 
variance across parameters in healthy subjects, and 26.2% in AD patients. The top 10 biological 
parameters and their contributions to PC1 are plotted (with their target neuroimaging models in 
the legend), highlighting the receptor-imaging interactions that characterize the main axis of 
variability in each clinical subgroup. In healthy subjects, a multi-factorial combination of 
receptor-imaging interactions affecting atrophy and CBF changes were the most variable 
parameters along PC1. Notably, for AD patients, the top parameters were direct or receptor-
mediated effects of neural activity on various (but especially tau) imaging models. c-d) To 
evaluate the relative importance of receptor- and factor-factor interactions, we then aggregated 
the importance of all direct or interaction terms involving a given predictor class (factor or 
receptor type) along PC1, for healthy subjects (c) and (d) for AD patients, respectively. Note that 
the percentage variation across all parameters is shown. As such, there is an overlap in terms 
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between the two heat maps (receptor-factor interaction terms contribute to both), and they should 
be interpreted separately. 

 

Receptor-imaging alterations underlying cognitive deterioration in AD 

To determine the receptor-neuroimaging alterations underlying multiple cognitive variations in 
AD, we performed a multivariate cross-correlation analysis between the rate of changes of the 
selected cognitive descriptors and the biological parameters across all AD subjects (Materials 
and Methods: Biological parameters and relationship with cognition). Notably, we found that 
just the first component of the identified biological parameters can explain up to 39.7% 
(P<0.004, FWE-corrected) of the inter-individual variability in AD cognitive deterioration (Figs. 
4a). Furthermore, we identified the specific cognitive domains that are correlated with receptor-
neuroimaging alterations (Fig. 4c), with executive dysfunction being the most salient cognitive 
feature with respect to receptor-neuroimaging parameters. Finally, Fig. 4d presents a detailed 
pathway of 95 receptor-imaging interactions significantly associated with cognitive decline 
based on feature bootstrapping, and their associated neuroimaging modalities mediating AD-
related symptom severity. These results show that a multi-factorial set of molecular alterations 
are relevant to cognitive decline in AD. Cumulative effects of different neuroimaging 
interactions and receptor subtypes from the same family are summarized in Fig. 5, quantified by 
the total cognitive variance explained by all parameters of the relevant category via the 
significant SVD component. 

Gray matter density (2.1%) and CBF (1.5%) changes as predictors of neural activity dysfunction, 
and CBF (1.3%) and glucose metabolism (1.0%) as predictors of tau distribution were the most 
cognitively-significant pathways between imaging modalities, although tau as a predictor of 
amyloid distribution (0.7%), neural activity dysfunction (0.7%) and glucose metabolism (1.2%) 
was also significant. Overall, as predictors, biological parameters involving CBF, tau and gray 
matter density were the most significant in relation to the cognitive severity of AD. The 
neuroimaging models of neural activity dysfunction and tau accumulation were the major 
sources of cognitively-significant biological parameters.  

In terms of receptor systems, glutamatergic, GABAergic and cholinergic alterations were 
significant to cognitive decline, as summarized in Supplementary Table S6. Alterations to 
glutamatergic predictors of resting state functional activity (2.5%), GABAergic predictors of 
amyloid deposition (1.4%), and cholinergic predictors of tau distribution (1.4%) were the 
dominant receptor effects.  

Furthermore, while the second component was borderline non-significant (p<0.051), it explained 
23.4% of the variance between model parameters and cognitive decline (r=0.89, p<10-8; 
Supplementary Fig. S10). In this axis, receptor-imaging parameters predicting neural activity 
were less prominent, with CBF and metabolism model parameters contributing more. 
Cognitively, this second component corresponded to non-executive function domains, primarily 
memory, language and visuospatial function. 

As a control case, we performed an equivalent cross-correlation analysis in the healthy 
population, notably finding the first principal component relating re-MCM parameter with rates 
of cognitive decline in health to be non-significant (Supplementary Fig. S3), although the second 
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principal component explaining a small amount of cognitive variance was significant (15.5% 
variance explained, p<0.02; Supplementary Fig. S4). Furthermore, we found no significant 
component in amyloid-negative healthy subjects (p>0.2 for all components). We attribute this 
effect to the lack of consistent cognitive decline in the analyzed healthy population, in contrast to 
the large variability observed for AD.  

To test the sensitivity of our findings to genetic covariates, we repeated our analyses both with 
and without APOE ε4 allele status and a polygenic hazard score (PHS) 49 as covariates in the 
SVD analysis, in addition to age, gender and education in both cases. To overcome the low 
number of AD subjects, we expanded our criteria to include MCI and AD subjects (N=177 for 
APOE status, N=161 for PHS). Importantly, we confirmed that the previously identified AD-
related significant latent variables and parameters are robust to the inclusion of APOE status and 
PHS (Supplementary Fig. S5 and S6). Finally, to further restrict our analysis to subjects on the 
amyloid-mediated AD spectrum, we repeated the SVD analysis in amyloid positive subjects with 
MCI and AD (N=52). As was the case in the initial AD group, we found one significant principal 
component (44.3% variance explained, p<0.003) with a high correlation between model 
parameters and cognitive decline (mainly executive function; r=0.76,p<0.001). The main 
receptor-imaging interactions along this axis were analogous to those in the AD group, namely 
cholinergic predictors of tau accumulation, although parameters of the neural activity model 
were less prominent in favour of predictors of metabolism (particularly for adrenergic and 
cholinergic systems; see Supplementary Fig. S9). 
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Figure 4: Significant neurotransmitter receptor-imaging interactions underlying AD 
clinical severity. a) The latent cross-correlation components are ranked by the fraction of 
cognitive decline variance explained by re-MCM biological parameters (along with the reported 
p-values based on the permutation analysis; see Biological parameters and relationship with 
cognition). In this case, only a single latent component was significant (39.7% variance 
explained, p<0.004, FWE-corrected). b) A notable correlation (r=0.80; P<10-8) between the 
projections of statistically stable re-MCM parameters and rates of cognitive decline in the 
principal component space was observed, with the removal of an outlier subject more than 3 
median absolute deviations from the median. c) Saliences of cognitive decline to this first latent 
component, providing a relative ranking of cognitive domains. These saliences are proportional 
to the contribution of each term relative to every other term, for example showing that executive 
dysfunction is most correlated with alterations to receptor-imaging interactions in AD. d) 
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Receptor-imaging pathways that are significantly correlated with cognitive decline, arranged by 
neuroimaging model and receptor type (Supplementary Table S5). The angle of each sector is 
proportional to the contribution of the corresponding parameter to explaining the variance in the 
rates of cognitive decline. The inner sectors represent the 6 neuroimaging modalities that 
together comprise each personalized re-MCM model. Within each modality, the intermediate 
sectors represent the neurotransmitter system involved, while the outer sector consists of the 
specific two-way receptor-neuroimaging interactions or direct predictor terms in the model. 
Notably, while receptors appear only as predictors in the outer sector, neuroimaging modalities 
appear both as predictors and as model outputs in the inner sectors. Thus, the relative importance 
of each neuroimaging modality to explaining cognitive differences is not fully represented by the 
angle of each inner sector. 

 

 

Figure 5: Contributions of mechanistic pathways to the severity of cognitive decline in AD. 
To better visualize the importance of neuroimaging factors and neurotransmitter receptor 
systems, heatmaps of the cumulative cognitive variance explained by each predictor category in 
each neuroimaging model are shown. These variances are the percentages of total cognitive 
variance that are explained by significant biological parameters of each category via the first 
significant SVD component. As such, the rows of the heatmap on the left replicate the inner 
sector of Fig. 4d, while the columns show the importance of each imaging modality or receptor 
family as predictors, with CBF and tau predictors explaining the most variance in cognitive 
decline. 

 

Clinically-similar subjects have different underlying receptor alterations 

Finally, for each participant and receptor family, we defined a summary metric quantifying how 
much receptor-based mechanisms differ from clinically healthy subjects (see Statistical analysis: 
Inter-subject mechanistic variability). For example, a given subject’s glutamatergic Mahalanobis 
distance is a combined measure of the “unhealthiness” of receptor-based interactions and spatial 
distributions involving NMDA, AMPA and kainate, while accounting for the variation of these 
mechanisms in healthy subjects. 

Although a simplified summary metric, the receptor Mahalanobis distances explained a large 
proportion of cognitive variance in the AD population, with 71.4% for executive function 
(p<0.0004), 43.3% for memory (p<0.08), 18.7% for language (p<0.66), 40.1% for visuospatial 
function (p<0.10), 43.8% for MMSE (p<0.08) and 33.8% for ADAS11 (p<0.22). Figure 6a 
shows the effects of each receptor family on cognitive domains, as well as the percentage 
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improvement in explaining cognitive variance due to each receptor family. We note the large 
negative effects of GABAergic alterations on executive function and the MMSE, and 
dopaminergic alterations on memory. Interestingly, cholinergic alterations showed a moderate 
positive effect and explanatory importance towards executive function.  

In Figure 6b-c, we illustrate how two AD patients with similar cognitive symptoms present 
distinct receptor alteration fingerprints, with primarily glutamatergic and cholinergic 
mechanisms respectively. Importantly, this result suggests that even subjects with identical 
clinical diagnoses present distinctive underlying spatiotemporal molecular alterations, and 
supports the use of whole-brain generative models to uncover patient-specific receptor and 
potential disease mechanisms to target clinically. 
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Figure 6: Receptor alterations underlying inter-individual disease heterogeneity. a) In AD 
patients (N=25), we quantified the relative effect sizes of standardized Mahalanobis distances of 
receptor mechanisms on different cognitive domains. We also standardized the regression 
coefficients within each cognitive domain before visualizing to facilitate comparison across 
cognitive domains, and the percentage improvement in model fit (R2) due to each receptor 
system is also shown. For example, the explanation of inter-subject variability in executive 
function decline by glutamatergic, cholinergic, adrenergic, serotonergic and dopaminergic 
Mahalanobis distances is improved by 120% (i.e. more than doubled) by the inclusion of 
GABAergic Mahalanobis distance as well. b-c) We show two AD subjects, with similar 
symptoms across a variety of cognitive domains. For these subjects, we calculated the 
Mahalanobis distance to the distribution of all healthy subjects (N=112), along mechanisms 
involving each receptor family. The subjects show distinct receptor alterations based on their 
longitudinal neuroimaging changes, despite their shared designation as AD patients and similar 
cognitive profiles.   

Discussion 
In this work, we have presented a personalized, whole-brain and generative multi-modal 
neuroimaging model incorporating receptor-neuroimaging interactions using in-vivo data. 
Subsequent analyses on the resulting models have allowed, for the first time, the identification of 
i) variability in receptor-neuroimaging interactions in healthy subjects and AD patients, and ii) 
specific pathways of receptor-neuroimaging interactions that are important to cognitive decline 
in AD patients. This exploratory analysis provides a bridge between molecular-level mechanisms 
and observable macroscopic neuroimaging biomarkers of healthy aging and AD, revealing which 
neurotransmitter receptor systems mediate dysfunctional interactions between neurobiological 
processes such as cerebral blood flow, amyloid and tau deposition, gray matter atrophy, neural 
activity and metabolism. 

Due to the difficulty of comprehensive, personalized in vivo receptor imaging for a large cohort, 
receptor maps were not specific to each subject, but instead the averaged templates of 4 post-
mortem brain samples. Post-mortem in vitro autoradiography allowed the imaging of a large 
number of receptor types, even those without in vivo radioligands. Firstly, our work demonstrates 
that i) multi-scale interaction terms involving the spatial distributions of neurotransmitter 
receptors are highly informative to models of neuroimaging progression, and ii) even group-
averaged receptor map templates can significantly improve the personalized model fit in nearly 
all subjects when combined with personalized neuroimaging predictors. Specifically, 
incorporating receptor maps and multi-scale receptor-imaging interactions to personalized 
models with multi-modal neuroimaging predictors improves the average data variance explained 
from approximately 40% to 70% (Fig. 2a,b). This improvement is statistically significant (F-test 
with P<0.05) in almost all subjects (Fig. 2c), even after accounting for the additional predictive 
power of the larger, multi-scale models. Including only receptor maps without receptor-imaging 
interactions also resulted in a more modest yet significant improvement in the vast majority of 
subjects across all imaging modalities (Supplementary Fig. S2). This is a particularly strong 
result, validating the use of a group-averaged receptor template, given the large improvement 
and the stringent criterion accounting for additional model parameters.  
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Additionally, models using the true receptor templates perform significantly better (P<0.05 of 
𝑅2) than models using randomly permuted, null receptor maps in almost all subjects (Fig 2d; 
80.4%-98.1%, depending on the modality), although this improvement was less evident with 
disease progression (Supplementary Fig. S7). These results, along with the consistency of 
regional receptor densities across the 4 (aged but healthy) brains used to produce the templates 
compared to inter-region variability 35, support the applicability of receptor templates to a wider 
population. Receptor mapping studies across more diverse clinical groups of patients would help 
validate or augment our modeling approach. Nevertheless, given the difficulty of acquiring a 
wide variety of in-vivo molecular data, due to a limited number of appropriate radioligands, and 
the high cost of longitudinal molecular imaging, these results on model accuracy are a promising 
validation for the combination of other molecular templates (such as gene expression atlases) 
with personalized neuroimaging predictors. These “pseudo-personalized” molecular-imaging 
predictors can then be incorportated into neuroimaging models and used to infer mechanistic 
alterations in a group of subjects. If these personalized models are sufficiently accurate, as in this 
work, the weights of their biological parameters then serve as proxies for individual-specific 
alterations to receptor-mediated mechanisms.  

While interpreting these parameters, it is important to distinguish between the types of biological 
mechanisms they represent, which include (for each neuroimaging model) i) direct neuroimaging 
effects, ii) direct receptor density effects, iii) receptor-imaging interactions, iv) network 
propagation and v) offset terms representing an intrinsic rate of change for the neuroimaging 
modality. We hypothesize that ageing and neurodegeneration alter the spatial distributions of and 
functional interactions involving neurotransmitter receptors, which would lead to subject-specific 
model parameters to compensate in the absence of inter-subject variability in receptor data. Thus, 
model parameters are a proxy for alterations to spatial maps of receptors or their interactions 
with neurobiological processes (represented by direct model receptor density terms and receptor-
imaging interaction terms in the model, respectively). In our parameter analyses in Receptor-
imaging alterations underlying cognitive deterioration in AD, direct receptor density terms 
represent alterations to the spatial distribution of a particular receptor. Each interaction biological 
parameter value can be interpreted as the effect of the corresponding receptor or imaging factor 
on the brain reorganization process, as measured by neuroimaging changes, given “normal” (i.e. 
spatial mean) values of all related predictors involving the same receptor or imaging term, 
respectively. For example, we consider the case where the interaction term between a 
glutamatergic receptor and amyloid in the CBF model is significantly related to cognitive 
decline. This implies that, under normal levels of amyloid and the glutamatergic receptor 
individually, a functional alteration in this mechanism (quantified by the re-MCM parameter 
weight) is correlated with faster cognitive deterioration. 

Biological parameters were evaluated for principal axes of variability in Fig. 3 and the 
cognitively-relevant variability in Fig. 4. The former method was used to identify linear 
combinations of biological parameters that accounted for inter-individual differences in receptor 
and/or neuroimaging interaction strengths in healthy and AD subjects. On the other hand, the 
goal of the latter analysis was to identify biological parameters that were robustly correlated with 
multivariate measures of cognitive decline in AD. The purpose of these analyses was not to 
compare effects sizes between predictors, but rather to explore inter-subject differences in 
receptor-imaging interactions in relation to cognitive decline. For example, if regional amyloid 
accumulation strongly predicts changes in functional activity, but this biological parameter is 
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consistent across subjects with different clinical and cognitive states, it would not be significant 
to our analysis. Rather than using clinical diagnosis, which is subject to large variability due to 
patient presentation and clinician bias, we used a combination of cognitive test scores. 
Ultimately, cognitive performance is the phenotype of interest in neurodegeneration. Our SVD 
analysis allows us to identify parameters associated with cognitive scores, rather than simply 
those with a large variability between individuals due to other causes. 

Sources of variability in healthy and AD subjects (Fig. 3) reflect alterations to mechanisms of 
receptor-imaging interaction that predict the same or another imaging modality. Here, we 
observed that a single PCA component explains 97.3% of the inter-individual variability in 
healthy subjects. Along this axis, a multi-faceted combination of receptor-imaging interaction 
predictors of CBF alterations (e.g. the interaction between dopaminergic D1 receptors and 
amyloid) and gray matter atrophy (e.g. the interaction between glutamatergic AMPA receptors 
and amyloid) account for the majority of variability (Fig. 3a,c). Interestingly, there is relatively 
low variability in the biological parameters of receptor influence on neural activity, glucose 
metabolism and tau distribution in healthy individuals (Fig. 3c). In healthy subjects, the receptor-
imaging mechanisms affecting these factors are comparatively consistent, whereas the 
mechanisms behind atrophy, CBF regulation and amyloid accumulation display more inter-
subject heterogeneity. 

In contrast, the first principal component of AD subjects’ biological parameters explained only 
26.2% of the total variance, but this was dominated by neural activity as a (receptor-modulated) 
predictor of tau accumulation (as well as other neuroimaging modalities; Fig. 3b,d). Receptor 
mechanism variability was largely explained by adrenergic and serotonergic predictors, for 
example the interactions of α1 and 5HT1A receptors with neural activity to predict tau 
accumulation. As tau is primarily present in axonal microtubules, the exacerbation of tau 
pathology has been linked to enhanced neural activity 50. Conversely, tau is also believed to 
suppress and silence neural activity 22. Thus, the principal component of variability in AD 
subjects may represent variability in an activity-dependent tau accumulation via adrenergic α1, 
serotonergic 5HT1A,  dopaminergic D1, and cholinergic α4β2 receptors. This would be consistent 
with the observed mediation of tau hyperphosphorylation by adrenergic and serotonergic 
receptors in animal models 51 52. 

From the inner sectors of Fig. 4d, inter-individual differences in cognitive decline are most 
correlated with biological parameters of the neural activity, tau and amyloid models, and least 
correlated with biological parameters of the CBF, gray matter density and glucose metabolism 
models. In other words, differences in receptor-imaging interactions affecting CBF changes are 
less relevant to cognitive symptom severity in AD than those affecting resting state functional 
activity. While neural activity is not a cognitively-important predictor of other neuroimaging 
modalities, many predictors of neural activity dysfunction are correlated with cognitive severity 
in AD (Fig. 5). Conversely, predictors of CBF do not vary significantly with cognition, whereas 
CBF itself is an important predictor of many other neuroimaging modalities. This may imply a 
causal ordering, with CBF alterations preceding dysfunctional activity. 

The glutamatergic system is implicated in cognitive decline via its role as the major excitatory 
mediator of neural activity 53 54 55. In AD, the glutamatergic system is involved in excitotoxicity 
due to calcium ion influx via NMDA receptors 53, resulting in synaptic loss and neuronal cell 
death 54. Tau and amyloid are involved via an overactivation of NMDA receptors 56. The 
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synaptic activation of NMDA receptors is linked to specific neurophysiological conditions, 
particularly activity-dependent synaptic plasticity, as well as behavioural symptoms of multiple 
brain disorders including AD 57. In addition, AMPA receptors are involved in synaptic scaling, 
and consequently learning and memory. Reductions in AMPA receptor levels have been 
observed in mouse models of AD 58, as well as in the entorhinal cortices 59 of AD patients, with a 
differential preservation of certain subunits in the hippocampus 60, and AMPA receptor 
endocytosis has been linked to the phosphorylated tau signaling cascade 61. Thus, the established 
AD-related alterations and cognitive roles of the glutamatergic NMDA and AMPA receptors 
would be consistent with their significant modulation of resting state functional activity in 
relation to cognitive decline in AD via interactions with CBF, glucose metabolism and tau. 

From the columns of Fig. 5, CBF changes are the largest neuroimaging driver of cognitively-
relevant dysfunction in other modalities, consistent with its precedence among AD imaging 
biomarkers 10. Closely coupled to neural activity, CBF is mediated by several neuronal factors, 
including vasodilatory neurotransmitters, and vascular dysregulation is implicated in the 
pathogenesis of AD 62. CBF interactions with a multitude of receptors were correlated to 
cognitive severity via amyloid, neural activity, gray matter density and tau models. This is 
consistent with the amyloid-dependent relationship of CBF to memory performance 63, and the 
link to tau pathology via gene expression alterations in AD 64.  

Furthermore, inter-individual differences in the effects of tau on other imaging modalities are 
also major contributors to AD-associated cognitive decline, as seen in Fig. 5. These include 
glutamatergic interactions affecting neural activity and amyloid accumulation, and a 
multifactorial set of receptor interactions affecting metabolism. Cognitive decline in AD is 
accompanied by changes in the role of regional tau concentration as a predictor of amyloid 
distribution, suggesting synergistic or mediation effects such as the tau axis hypothesis 65. Tau is 
believed to mediate amyloid toxicity 65, which may explain the significant role of tau as a 
predictor of amyloid accumulation (Fig. 5). Multimodal PET imaging has shown a region-
dependent relationship between tau burden and hypometabolism in AD 66. Futhermore, 
alterations to glucose metabolism in mice brains were found to lead to abnormal tau 
hyperphosphorylation 67. Along with the established neural activity dysfunction due to tau 
accumulation 68, these mechanisms are consistent with the cognitively-significant role of tau as a 
predictor of other neuroimaging modalities.  

Along with NMDA, acetylcholine is the neurotransmitter system most associated with 
Alzheimer’s disease and its clinical treatment 69. Based on the cholinergic hypothesis, 
dysfunction in acetylcholine-producing basal forebrain regions would eventually lead to synaptic 
deafferentiation in the cortical regions to which they project 70, with cognitive implications 71. 
This is consistent with the significant role of cholinergic predictors of tau distribution, which 
appear to be more correlated with cognitive severity of AD than amyloid distribution (Fig. 5).  

Although GABAergic receptors were not initially linked to AD, recent evidence has uncovered 
disease-related alterations, contributions to pathogenesis, and a potential therapeutic role in AD 
72. The disruption of the excitatory/inhibitory balance maintained by GABAergic signaling has 
been implicated in the cognitive symptoms of AD, such as an increase in epileptic seizures 73. 
Electrophysiological activity has found a functional remodeling of GABAergic neurons in AD, 
showing reduced currents and a faster rate of desensitization 74. The presence of amyloid was 
also found to affect the expression of the α6 subunit of the GABAA receptor 72. Furthermore, a 

Page 28 of 39 
 



role for tau has been proposed in the regulation of GABAergic function and synaptic plasticity to 
maintain normal cognition 73. Additionally, it has recently been found that the administration of 
benzodiazepine in mouse brains leads to tau hyperphosphorylation 75. Such drugs potentiate 
GABAergic neurotransmission by binding to the benzodiazepine binding site of GABAA 
receptors. As such, this may indicate a mechanistic pathway for the induction of tau pathology 
involving GABAergic receptors, based on the tau and gray matter sectors of Fig. 4d. From Fig. 
4d, the GABAA-associated benzodiazepine site is particularly involved in cognitively-significant 
interactions affecting amyloid accumulation. GABAA and GABAB receptors play a notable 
cognitive role by affecting neural activity dysfunction, and all three GABAergic targets included 
in this work are involved via tau accumulation.  

Finally, we introduced a summary metric of alterations to receptor-mediated interactions with 
reference to their normal variation in healthy ageing. Particularly, we found that GABAergic 
alterations had the largest effect on cognitive impairment in AD patients, significantly affecting 
executive function and the MMSE (Fig. 6a). Furthermore, we showed that subjects with identical 
clinical diagnosis and similar cognitive symptoms can have distinct underlying dynamics and 
receptor alteration fingerprints (Fig. 6b-c). These results highlight the clinical utility of  our 
dynamical modeling approach. By fusing in vitro receptor templates with longitudinal 
neuroimaging data and modeling the underlying dynamics of receptor-mediated neurobiological 
interactions, we are able to infer subject-specific mechanistic alterations despite the lack of 
subject-specific receptor data. As a demonstrative example, we summarized subject-specific 
alterations at the scale of receptor families. However, in a clinical context, subject-specific 
alterations at the broad scale of receptor families, the finer scale of specific receptors, or even 
specific receptor-neurobiological interactions (e.g. NMDA × CBF interactions) can be used to 
design personalized, precision treatments, which will be a topic of future work. 

The whole-brain re-MCM models used cytoarchitectonically-identified cortical regions of 
interest, neglecting sub-cortical structures for which no receptor distribution data was available. 
Many neurotransmitter alterations relevant to neurodegeneration occur in these regions, notably 
dopamine deficiencies in the basal ganglia in Parkinson’s disease and early cholinergic neuronal 
death in AD. As such, including sub-cortical regions may better characterize important molecular 
pathways. Nevertheless, some effects of these phenomena are captured via  projections to 
cortical neurons that are covered by our regions of interest. Additionally, future work will aim to 
integrate CSF into the model.  

In this work, we used fractional amplitude of low-frequency fluctuation (fALFF) 31 as the 
regional measure of functional integrity. Low frequency (0.01-0.08 Hz) oscillations in the blood 
oxygenation level-dependent (BOLD) signal reflect the intensity of spontaneous activity in the 
resting brain, primarily in the default mode network 31. When the amplitude of low frequency 
fluctuations (ALFF) is normalized by the overall power spectrum of the BOLD signal to 
calculate fALFF, the effects of physiological noise are suppressed 31. However, compared to 
ALFF, fALFF significantly amplifies the signal from some non-default mode network regions 
(namely temporal-parietal regions and the precentral gyrus) 31, reducing its desired specificity to 
resting state activity. Nevertheless, fALFF shows high temporal stability over the course of fMRI 
scans 76, long-term (i.e. about 6 month) test-retest reliability 77, and high sensitivity to AD 
progression 29 30. Alternative fMRI-based metrics include regional homogeneity (ReHo) 78 or 
graph theoretic metrics such as functional connectivity degree 79. Comparing fALFF, ReHo, and 
graph-based metrics using simultaneous resting state fMRI/PET scans, Aiello et al. found 
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functional connectivity degree to be the least correlated to glucose uptake, while the difference in 
correlation to glucose uptake between fALFF and ReHo was not significant 28. Furthermore, as 
an intentional consideration to maintain model interpretability, our modeling framework avoids 
graph theoretic fMRI metrics in order to separate local, intra-region effects from inter-region 
effects due to network propagation. Although graph theoretic features can have biophysical 
interpretation, such as weighted degree representing transneural propagation or regional 
participation coefficients reflecting metabolic demands, they integrate information from multiple 
regions, which causes a leakage of network information into the intra-regional component of our 
model. Thus, as fALFF is a local fMRI measure that has been found to be at least as informative 
as ReHo in reflecting metabolic activity and validated as a measure sensitive to AD progression 
by multiple studies 29 30, all the analyses and results presented in this study correspond to fALFF 
as the measure of resting state functional integrity. It is, however, important to note that all 
available fMRI metrics have limitations in reflecting actual neuronal activity or integrity. Here, 
our choice of metric is aligned with the “neurocentric” resting-state fMRI model 80, which 
assumes that the spontaneous fluctuations in BOLD signal reflect ongoing neuronal processes. 
Multiple limitations to this model have been pointed out, including the lack of clear 
neurophysiological interpretability 80, suggesting that interpretations of resting state fMRI-based 
findings (including ours) should be taken with caution. 

In addition to intra-region effects, our model considered network propagation along the 
tractography-derived white matter structural connectome. However, functional, metabolic 81 and 
vascular connectivity define complementary biophysical networks that may also contribute to the 
propagation of neurodegenerative pathology. For simplicity and to focus on local, receptor-
mediated interactions, we restricted our model to structural connectivity. The structural 
connectome is the physical substrate for the axonal propagation of pathology, and the scaffolding 
for the more abstract functional network. However, to estimate the effect of our choice of 
connectivity, we repeated our model fitting with functional connectivity, finding no significant 
change in model fit (Multi-scale interactions involving neurotransmitter receptors are important 
to explaining multifactorial brain reorganization and Supplementary Fig. S8). We attribute this 
to (i) the dominance of intra-regional effects in our model, with a relatively low contribution due 
to propagation effects and (ii) the shared information between anatomical and functional 
connectivity 48. While this work has focused on local interactions between biological processes, 
dynamical interactions also occur at a network level. For example, structural connectivity 82 and 
the vascular network 83 are two of the factors that shape functional connectivity, and modeling 
the dynamic interactions between these networks may be a potential direction for future work. 

The dynamical system modeling approach in this work relies on longitudinal and multi-modal 
neuroimaging data in order to fit personalized models. Consequently, our results would benefit 
from larger cohorts with more longitudinal samples of multi-modal data. Additionally, receptor 
map templates of patients at different stages of aging and disease progression would improve the 
characterization of salient alterations. While we have attempted to uncover causal molecular-
macroscopic mechanisms, due to the lack of personalized, longitudinal receptor maps, some 
identified biological model parameters may in fact reflect a molecular alteration (i.e. a change in 
either spatial distribution or functional alteration of a receptor) in response to a change in a 
macroscopic biological variable. As such, the exploratory interpretation of our results in relation 
to cognitive decline in AD should account for both possible causal directions between a given 
biological parameter and its target modality. For example, α1 receptors interacting with tau to 
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predict functional activity represents a 3-way interaction, which may in fact reflect a causal 
direction from functional activity to adrenergic alteration. Furthermore, we have assumed a 
direct relationship between each imaging modality and an underlying neurobiological process. 
For instance, CBF in our model was derived from ASL MRI, the temporal resolution of which is 
limited by the relaxation time of blood. However, recent work on venous blood flow using 
BOLD perfusion lag-mapping has shown significant age-related changes outside the temporal 
resolution of ASL MRI 84. As new or improved imaging biomarkers are developed for AD, their 
future inclusion in the re-MCM framework would improve the coverage of potential disease-
related mechanisms. 

Nevertheless, these results offer interpretable results via molecular targets and mechanisms of 
action. We find that receptor distributions mediate interactions between macroscopic biological 
factors that significantly affect cognitive decline in AD. Specifically, inter-individual differences 
in cognitive deterioration correlate with the modulation of neural activity dysfunction primarily 
by glutamatergic receptors, amyloid accumulation by GABAergic receptors, and tau buildup by 
glutamatergic, GABAergic and cholinergic receptors. Traditionally, the accumulation of 
misfolded proteins, namely amyloid and tau, has been implicated in the pathogenesis of AD. 
However, our results suggest a multi-factorial, and heterogeneous set of mechanisms involved in 
disease.  Furthermore, our personalized, data-driven approach allows us to account for inter-
subject heterogeneity in biological pathology and clinical presentation.  

A growing body of evidence supports the critical role of neurotransmitter receptors in AD 
symptoms severity and their subsequent potential as therapeutic targets 85 86. Neurotransmitter-
based drugs such as the acetylcholinesterase inhibitor donepezil and the NMDA antagonist 
memantine have long been proposed as potential treatments for AD patients. However, these 
drugs have shown limited efficacy and adverse side effects 20 56. We propose that using 
personalized and multi-scale modeling can identify patient-specific alterations and therapeutic 
needs, by stratifying patients based on the biological parameter weights corresponding to the 
underlying, cognitively-significant mechanisms (Figs. 1c and 6). This information can then be 
used to design individually-tailored multi-factorial therapies to slow the process of cognitive 
decline in both diseased and normally-ageing individuals. 
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Supplementary 

Supplementary Table S1: Summary of demographic data for subjects included in 3 analysis: i) 
all re-MCM models, ii) healthy subjects that did not progress to MCI or AD, and iii) subjects 
that developed AD. 

Category All re-MCM subjects 
Healthy 
Aging AD 

Total subjects 423 112 25 
Female 194 (45.9%) 56 (50.0%) 9 (36.0%) 
Mean age (years) 71.8 (±7.0) 73.8 (±6.0) 72.0 (±5.5) 
Mean education (years) 16.4 (±2.7) 16.5 (±2.8) 16.4 (±2.8) 
APOE4 positive 175 (41.4%) 35 (31.2%) 8 (32.0%) 

 

Supplementary Table S2: Proportion of subjects with multi-modal neuroimaging data by 
clinical subgroup.  

Category All re-MCM subjects Healthy Ageing AD 
CBF 195 (46.1%) 39 (34.8%) 16 (64.0%) 
Amyloid 422 (99.8%) 112 (100.0%) 25 (100.0%) 
Neural Activity 127 (30.0%) 32 (28.6%) 6 (24.0%) 
Metabolism 418 (98.8%) 109 (97.3%) 24 (96.0%) 
Gray Matter 423 (100.0%) 112 (100.0%) 25 (100.0%) 
Tau 238 (56.3%) 82 (73.2%) 14 (56.0%) 
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Supplementary Table S3: Neurotransmitter receptor ligands used to obtain receptor maps. 

Neurotransmitter Receptor Ligand Type 
Glutamate AMPA [3H]-AMPA Agonist 

NMDA [3H]-MK-801 Antagonist 
Kainate [3H]-Kainate Agonist 

GABA GABAA [3H]-Muscimol Agonist 
GABAB [3H]-CGP 54626 Antagonist 
GABAA-associated 
benzodiazepine binding site 
(GABAA/BZ) 

[3H]-Flumazenil Antagonist 

Acetylcholine M1 [3H]-Pirenzepine Antagonist 
M2 [3H]-Oxotremorine-M Agonist 
M3 [3H]-4-DAMP Antagonist 
Nicotinic α4β2  [3H]-Epibatidine Agonist 

Noradrenaline α1 [3H]-Prazosin Antagonist 
α2 [3H]-RX 821002 Antagonist 

Serotonin 5-HT1A [3H]-8-OH-DPAT Agonist 
5-HT2 [3H]-Ketanserin Antagonist 

Dopamine D1 [3H]-SCH 23390 Antagonist 
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Supplementary Table S4: Jülich histological atlas regions. Note that regions are defined by 
cytoarchitecture, and thus do not correspond perfectly with functional regions. 

Lobe Anatomical subdivision Jülich area Region name  
Occipital lobe Visual cortex hOc1 Brodmann’s area 17 / 

V1 
hOc2 Brodmann’s area 18 / 

V2 
hOc4d V4 
hOc3d V3d 
hOc3v V3v 
hOc4v V4 

Extrastriate cortex FG1 Part of Brodmann area 
19 

FG2 Part of Brodmann area 
19 

Parietal lobe Somatosensory cortex 1 Brodmann’s area 1 
2 Brodmann’s area 2 
3a Brodmann’s area 3a 
3b Brodmann’s area 3b 

Superior parietal lobule 5L Brodmann’s area 5L 
5M Brodmann’s area 5M 
7A Brodmann’s area 7A 

Inferior parietal lobule PGa Anterior inferior 
parietal area  

PGp Posterior inferior 
parietal area  

PFt Temporal inferior 
parietal area 

PFm Medial inferior  
parietal area  

Temporal lobe Auditory cortex Te1 Temporal area 1 (part 
of Brodmann’s area 
41) 

Te2 Temporal area 2 (part 
of Brodmann’s area 
41) 

Hippocampus CA+dentate Cornu ammonis + 
fascia dentata 

Entorhinal cortex Ent Brodmann’s area 28 
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 20 Brodmann’s area 20 
 21 Brodmann’s area 21 
 22 Brodmann’s area 22 
 36 Brodmann’s area 36 
 37 Brodmann’s area 37 
 38 Brodmann’s area 38 

Frontal lobe Agranular premotor cortex 6 Brodmann’s area 6 
Primary motor cortex 4p Brodmann’s area 4p 
Broca’s region 44  

45  
Frontopolar cortex Fp1 Frontopolar area (part 

of Brodmann area 10) 
Fp2 Frontopolar area (part 

of Brodmann area 10) 
Orbitofrontal cortex Fo1 Orbitofrontal area 

(part of Brodmann 
area 11) 

Lateral prefrontal 46 Brodmann’s area 46 
 47 Brodmann’s area 47 
 8 Brodmann’s area 8 
 9 Brodmann’s area 9 

Cingulate regions 
(multiple lobes) 

Anterior cingulate p24ab Pregenual cingulate 
areas p24a & p24b 

p32 Pregenual cingulate 
area p32 

Posterior cingulate 23 Brodmann’s area 23 
31 Brodmann’s area 31 
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Supplementary Table S5: Biological parameters most correlated with cognitive decline in AD, 
and the percentage of cognitive decline variance explained. 

Neuroimaging 
Modality Model Parameter Receptor Type 

Explained 
Variance 

CBF  NMDA × CBF  Glutamatergic 0.22% 
 M2 × CBF  Cholinergic 0.30% 
 M2 × Amyloid  Cholinergic 0.17% 
 M1  Cholinergic 0.30% 
 α1 × Gray Matter  Adrenergic 0.11% 
 D1 × Amyloid  Dopaminergic 0.22% 

Amyloid  Kainate × CBF  Glutamatergic 0.10% 
 AMPA × Tau  Glutamatergic 0.15% 
 NMDA × Tau  Glutamatergic 0.18% 
 Kainate × Tau  Glutamatergic 0.10% 
 AMPA  Glutamatergic 0.13% 
 GABAA/BZ × CBF  GABAergic 0.33% 
 GABAA/BZ × Neural Activity  GABAergic 0.26% 
 GABAA/BZ × Metabolism  GABAergic 0.26% 
 GABAA/BZ × Tau  GABAergic 0.22% 
 GABAB  GABAergic 0.29% 
 α4β2  Cholinergic 0.29% 
 α2 × Amyloid  Adrenergic 0.19% 
 α2 × Tau  Adrenergic 0.11% 
 α2  Adrenergic 0.31% 
 5HT2 × CBF  Serotonergic 0.34% 
 5HT1A  Serotonergic 0.13% 
 D1 × Metabolism  Dopaminergic 0.15% 
 Neural Activity  Non-Receptor 0.04% 
 spreading  Non-Receptor 0.14% 

Neural Activity  AMPA × CBF  Glutamatergic 0.24% 
 Kainate × CBF  Glutamatergic 0.15% 
 AMPA × Amyloid  Glutamatergic 0.16% 
 AMPA × Neural Activity  Glutamatergic 0.14% 
 AMPA × Metabolism  Glutamatergic 0.36% 
 NMDA × Metabolism  Glutamatergic 0.15% 
 AMPA × Gray Matter  Glutamatergic 0.42% 
 AMPA × Tau  Glutamatergic 0.29% 
 NMDA × Tau  Glutamatergic 0.30% 
 Kainate × Tau  Glutamatergic 0.13% 
 NMDA  Glutamatergic 0.15% 
 GABAA × CBF  GABAergic 0.27% 
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 GABAB × CBF  GABAergic 0.35% 
 GABAA × Gray Matter  GABAergic 0.23% 
 GABAB  GABAergic 0.27% 
 M1 × CBF  Cholinergic 0.11% 
 M2 × CBF  Cholinergic 0.17% 
 M2 × Amyloid  Cholinergic 0.16% 
 M3 × Neural Activity  Cholinergic 0.20% 
 M1 × Gray Matter  Cholinergic 0.14% 
 M2 × Gray Matter  Cholinergic 0.23% 
 M1  Cholinergic 0.12% 
 M3  Cholinergic 0.23% 
 α2 × CBF  Adrenergic 0.26% 
 α2 × Amyloid  Adrenergic 0.32% 
 α2 × Gray Matter  Adrenergic 0.15% 
 5HT2 × Gray Matter  Serotonergic 0.42% 
 D1 × Amyloid  Dopaminergic 0.29% 
 D1 × Gray Matter  Dopaminergic 0.49% 
 D1  Dopaminergic 0.31% 

Metabolism  Kainate × Metabolism  Glutamatergic 0.11% 
 Kainate × Tau  Glutamatergic 0.18% 
 Kainate  Glutamatergic 0.14% 
 GABAA × Tau  GABAergic 0.20% 
 GABAA/BZ × Tau  GABAergic 0.22% 
 α4β2 × CBF  Cholinergic 0.11% 
 M2 × Tau  Cholinergic 0.16% 
 α4β2 × Tau  Cholinergic 0.11% 
 α2 × Gray Matter  Adrenergic 0.11% 
 α1 × Tau  Adrenergic 0.14% 
 5HT1A × Tau  Serotonergic 0.14% 
 D1 × Neural Activity  Dopaminergic 0.17% 
 spreading  Non-Receptor 0.16% 

Gray Matter  NMDA × Gray Matter  Glutamatergic 0.07% 
 GABAA/BZ × CBF  GABAergic 0.28% 
 M3 × CBF  Cholinergic 0.21% 
 M2 × Gray Matter  Cholinergic 0.10% 
 α2 × Metabolism  Adrenergic 0.07% 
 5HT2 × CBF  Serotonergic 0.18% 

Tau  NMDA × CBF  Glutamatergic 0.16% 
 Kainate × Amyloid  Glutamatergic 0.10% 
 Kainate × Metabolism  Glutamatergic 0.36% 
 GABAA/BZ × CBF  GABAergic 0.29% 
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 GABAA  GABAergic 0.12% 
 GABAB  GABAergic 0.27% 
 M3 × CBF  Cholinergic 0.33% 
 α4β2 × Amyloid  Cholinergic 0.17% 
 M2 × Neural Activity  Cholinergic 0.10% 
 α4β2 × Metabolism  Cholinergic 0.18% 
 α4β2 × Tau  Cholinergic 0.25% 
 α4β2  Cholinergic 0.36% 
 α1 × CBF  Adrenergic 0.12% 
 α1 × Metabolism  Adrenergic 0.11% 
 α2 × Metabolism  Adrenergic 0.24% 
 α2 × Gray Matter  Adrenergic 0.10% 
 5HT2 × CBF  Serotonergic 0.40% 
 5HT1A × Amyloid  Serotonergic 0.15% 
 5HT1A × Tau  Serotonergic 0.20% 
 Metabolism  Non-Receptor 0.08% 
 Gray Matter  Non-Receptor 0.25% 

 

Supplementary Table S6: Total cognitive variance explained by receptor type in AD patients 
(via the significant SVD component). 

Receptor Type Total Variance Explained 
Glutamatergic 4.47% 
GABAergic 3.85% 
Cholinergic 4.46% 
Adrenergic 2.34% 
Serotonergic 1.96% 
Dopaminergic 1.63% 

Supplementary Table S7: Performance gain due to the inclusion of receptor maps, and the p-
value from a two-sample t-test for each modality.  

Imaging Modality Average Gain in R2 P-value 
CBF 125% ± 123% P<0.001 

Amyloid 119% ± 141% P<0.001 
Neural Activity 123% ± 150% P<0.001 

Metabolism 133% ± 200% P<0.001 
Gray Matter 234% ± 389% P<0.001 

Tau 141% ± 142% P<0.001 
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Supplementary Table S8: Performance gain due to true receptor distributions over null maps, 
and p-value of the true receptor data model belonging to the null distribution. 

Imaging Modality Average Gain in R2 P-value 
CBF 19.5% ± 13.7% P<0.01 

Amyloid 20.5% ±15.3% P<0.01 
Neural Activity 22.3% ± 15.0% P<0.01 

Metabolism 15.6% ± 13.3% P<0.04 
Gray Matter 20.2% ± 18.4% P<0.03 

Tau 21.5% ± 13.0% P<0.01 
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Supplementary Figure S1: Modeling and analysis pipeline. First, multi-modal neuroimaging 
data, neurotransmitter receptor maps and tractography-derived connectivity matrices are used to 
fit personalized neuroimaging models. PCA was used to identify biological parameters 
contributing to inter-individual variability in healthy and AD subgroups. Subsequently, model 
parameters were compared to the subject-wise variation of cognitive decline in the AD subgroup 
using singular value decomposition. SVD allows the ranking of parameters based on the variance 
explained, allowing the identification of prominent alterations. 
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Supplementary Figure S2: Receptor maps improve neuroimaging model accuracy. In all 
(N=423) subjects, we fit personalized neuroimaging models using receptor maps and 
neuroimaging data, but excluding receptor-neuroimaging interactions. a) The distribution of R2 

shows a moderate improvement over the restricted model with no receptor data (Fig. 2b). b) The 
majority of subjects showed a significant (P<0.05) improvement in R2, based on an F-test 
between the restricted, interaction-free model (with receptor maps) and the neuroimaging-only 
model of Fig. 2b. 
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Supplementary Figure S3: Secondary significant component links biological parameters to 
cognitive decline in healthy ageing. We performed singular value decomposition linking 
biological parameters to rates of cognitive decline in N=112 healthy subjects. The latent 
components are ranked by the fraction of cognitive decline variance explained, and p-value 
based on the permutation analysis outlined in Biological parameter cognitive significance 
analysis. A minor SVD component linking re-MCM parameters to rates of cognitive decline was 
significant (p<0.02 for the second component). 
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Supplementary Figure S4: Significant neurotransmitter receptor-imaging interactions 
underlying cognitive decline in healthy aging (PC2; 15.5% variance explained, p<0.02; N=112). 
Receptor-imaging interactions significantly correlated, via the second principal component, to 
cognitive decline in healthy aging are shown. 
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Supplementary Figure S5: Effect of APOE4 status on significant neurotransmitter receptor-
imaging interactions underlying cognitive decline in MCI and AD subjects (N=177). a) 
Cognitive decline variance explained by significant receptor-imaging interactions identified after 
covariate adjustment of subjects’ model parameters by APOE ε4 allele status, for the first 
principal component (40.2% variance explained, p<0.001). b) Significant interactions identified 
without covariate adjustment by APOE status in the same subgroup, for the first principal 
component (41.9% variance explained, p<0.001).   
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Supplementary Figure S6: Effect of polygenic hazard score (PHS) on significant 
neurotransmitter receptor-imaging interactions underlying cognitive decline in MCI and AD 
subjects (N=161). a) Cognitive decline variance explained by receptor-imaging interactions 
identified after covariate adjustment of subjects’ model parameters by polygenic hazard scores, 
for the first principal component (40.6% variance explained, p<0.001). b) Significant interactions 
identified without covariate adjustment by polygenic hazard score in the same subgroup, for the 
first principal component (42.2% variance explained, p<0.001).   
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Supplementary Figure S7: Distribution of significantly improved receptor template model fit by 
diagnoses (N=423). The average number of subjects (across all 6 modalities) for whom the true 
receptor maps resulted in significantly better model fit (p<0.05) than the randomly permuted 
receptor maps. The receptor template is most informative for healthy subjects, and progressively 
less for MCI and AD subjects. 
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Supplementary Figure S8: Distribution of model fit (R2) for re-MCM models using functional 
connectivity (N=423). The model performance is virtually indistinguishable from the structural 
connectivity model (Fig. 2; r>0.99 for all modalities). 
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Supplementary Figure S9: Model parameters significant to cognitive decline in amyloid-
positive MCI and AD subjects (N=52). Cognitive decline variance explained by receptor-imaging 
interactions, for the first principal component (44.3% variance explained, p<0.003; r=0.76, p<10-

8 after removing outliers more than 3 MAD from the projections of model parameters and 
cognitive scores, p<0.001).   
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Supplementary Figure S10: Second component of receptor-cognitive variance in AD (N=25). 
Contributions of receptor-imaging interactions to explaining the inter-subject variance between 
model parameters and cognitive scores projected to the second principal component (23.4% 
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variance explained, p<0.051). a) The second component also showed a high correlation between 
model parameters and cognitive scores (r=0.890, p<10-8). b) Cognitive variance in this axis 
showed a lower contribution of executive dysfunction. c) Receptor-imaging interactions in the 
second component showed a lower contribution due to neural activity model parameters, and a 
greater contribution due to CBF and metabolism models. 
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